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ABSTRACT
The genetic study of diverging, closely related populations is required for basic questions on demography

and speciation, as well as for biodiversity and conservation research. However, it is often unclear whether
divergence is due simply to separation or whether populations have also experienced gene flow. These
questions can be addressed with a full model of population separation with gene flow, by applying a Markov
chain Monte Carlo method for estimating the posterior probability distribution of model parameters. We
have generalized this method and made it applicable to data from multiple unlinked loci. These loci can
vary in their modes of inheritance, and inheritance scalars can be implemented either as constants or as
parameters to be estimated. By treating inheritance scalars as parameters it is also possible to address
variation among loci in the impact via linkage of recurrent selective sweeps or background selection.
These methods are applied to a large multilocus data set from Drosophila pseudoobscura and D. persimilis.
The species are estimated to have diverged �500,000 years ago. Several loci have nonzero estimates of
gene flow since the initial separation of the species, with considerable variation in gene flow estimates
among loci, in both directions between the species.

FOR many species, existence is a complicated mix a modest level of natural selection against gene flow
may be sufficient to enable divergence. But despite theseof multiple populations that are dynamic in size,

location, and levels of gene exchange. Sometimes an guidelines, empirical questions on population diver-
gence can be fairly intractable. Perhaps the clearest caseindividual population diverges from others to a suffi-

cient degree that evolution thereafter proceeds largely of this is the common situation when a measure of dif-
ferentiation has been obtained for a pair of populations,independently. What is it about these populations that

go on to become new species that sets them apart from such as a genetic distance or an estimate of Wright’s Fst

(Wright 1922). Given such a number, one can thenothers that do not? Clearly the accumulation of endemic
mutations under an extended period of allopatry can estimate how long ago the populations diverged (assum-

ing no gene flow), or one can estimate the gene flowenable this process (Dobzhansky 1936; Muller 1940;
rate, assuming the populations are at equilibrium andMayr 1942). But if populations are not completely sepa-
have been separated and are exchanging genes at thatrated, then divergence entails a competition between
rate for a very long period of time. In short, one canunifying and diversifying genetic processes. Genetic drift
fit a model that assumes the populations will becomewill enhance divergence, while gene flow will retard it.
increasingly divergent (model I, for isolation), or oneNatural selection, enabled by gene flow, can act to re-
can fit a model that assumes the populations will neverduce divergence if selective sweeps pass across popula-
diverge more than they have already, because of genetions. But on the other hand, natural selection that leads
flow (model M, for migration). Neither one is of muchto population-specific selective sweeps or that acts other-
use if the goal is to develop a full picture that includeswise to retard gene exchange can promote divergence.
estimates of separation time and gene flow.One classic finding on gene flow and genetic drift

Investigators have considered nonequilibrium modelsthat helps to focus our intuition is that a modest level
of population splitting; with gene flow, however, thereof gene flow (one gene copy per generation, on average)
are significant challenges (Latter 1973; Takahata andwill prevent substantial divergence at a locus (Wright
Slatkin 1990; Takahata 1995; Wakeley 1996b; Wake-1931). This point also begets a key corollary: that only
ley and Hey 1998). The problem is that the two differ-
ent models (I and M) can lead to similar gene tree
topologies and can be fit equally well to most kinds of
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not have identical predictions and data summaries and
likelihood methods that exploit these differences can
be used to distinguish them (Wakeley 1996a; Nielsen
and Slatkin 2000; Nielsen and Wakeley 2001).

One fairly complete approach is to include both isola-
tion and migration [the “isolation with migration” (IM)
model] and to apply a probabilistic method for fitting
the model to a data set. Nielsen and Wakeley (2001)
developed a likelihood/Bayesian framework for fitting
a six-parameter version of the IM model to data from
a single, nonrecombining locus drawn from two popula-
tions or closely related species. At the heart of the
method is an expression for the distribution of model
parameters �, given the data, X:

f(�|X) � cf(�)�Gf(X |G, �)f(G |�)dG . (1)

Here, c � 1/Pr(X), the inverse of the probability of the Figure 1.—The isolation with migration (IM) model is de-
data. In the course of calculations c is treated as a con- picted with two parameters sets. The basic demographic pa-

rameters are constant effective population sizes (N1, N2, andstant to ensure that the total probability for all values
NA), gene flow rates per gene copy per generation (m1 andof � sums to one. f(�) is the prior probability density
m2), and the time of population splitting at t generations infunction of the parameters and f(G |�) is the prior dis- the past. The second set of parameters is scaled by the neutral

tribution of genealogies (rooted ultrametric trees with mutation rate u, and it is these parameters that are actually
branch lengths). In this framework, inferences regard- used in the model fitting.
ing � are based on the posterior distribution of �, f(�|X).

The most challenging aspect of (1) hinges on the
terior densities for some data sets. Here we present someunknown genealogy (i.e., the gene tree) that underlies
extensions of the method that alleviate these problemsthe data. For any particular genealogy, G, and set of
and greatly increase the applicability of the method. Weparameters, �, it is possible to evaluate f(G |�) using co-
demonstrate the methods using previously publishedalescent theory (Kingman 1982a,b; Hudson 1983;
data from Drosophila pseudoobscura and D. persimilis.Tavare 1984). Also for a given mutation model it is

possible to calculate the probability of the data, for a
given genealogy and set of parameters values, f(X |G ,

MODEL�). The genealogy for each locus consists of a tree with
a branching pattern (topology), in which all of the DNA Consider a general IM model in which a population
sequences in the data set for that locus are represented gives rise to two populations, after which there may be
at the tips. Each genealogy also includes values for all gene exchange between the two populations. This model
of the branch lengths, as well as times of migration events. has six major parameters: the population sizes of the
In effect G is a nuisance parameter that must be inte- three populations (for populations 1 and 2 and the
grated out to gain insight into the demographic param- ancestral population), two migration rates, and a time
eters. Nielsen and Wakeley (2001) implemented a point at which the ancestral population gave rise to
Markov chain Monte Carlo (MCMC) approach that populations 1 and 2. In Figure 1, two versions of these
jointly approximates the integration over genealogies parameter sets are shown. One includes the basic demo-
in the course of also approximating the full expression graphic parameters of population size, migration rate,
for f(�|X). and time of population splitting. In this framework,

In principle the prior distribution of � can be set to the genetic process of drift and mutation occurs on a
reflect actual prior information regarding �; however, timescale of generations. However, when we fit the
for most purposes f(�) is set to a constant value over model to genetic data we usually do not have direct
a prescribed range of values. By setting this prior distri- access to a timescale that is in units of generations or
bution to be uniform, f(�|X) is proportional to the years. For this reason the method (and others like it)
likelihood of the parameters, given the data. Thus, for must scale the parameters either by the rate of genetic
example, if (1) can be evaluated, then the mode of the drift or by the mutation rate.
posterior distribution provides a maximum-likelihood In the present framework, each population is repre-
estimate of �. sented by a population mutation rate, � � 4Nu, where N

The method of Nielsen and Wakeley (2001) was is the effective size of a population of diploid individuals,
designed for data from just a single nonrecombining and u is the neutral mutation rate, rather than by popu-

lation size. For migration, the rates are expressed as thelocus, and it can be slow to converge on the correct pos-
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rate of migration for each gene copy, per mutation with state space on the set of all possible values of G and
� and stationary distribution f(G, �|X). Then f(�|X)event, or m � m/u. In this way, the product of a popula-

tion mutation rate and a migration rate is equal to the can be approximated by sampling values of � from
this chain at stationarity. The simulation initiates withmore familiar population migration rate M � 2Nm �

�m/2. The time parameter also is expressed in terms of a starting set of parameter values and a starting set
of genealogies that are consistent with the data andmutations, t � tu. If we wish, we can convert to a measure

of time that is on the same scale as the process of genetic proceeds by iteratively updating each of the genealogies
and the parameter values in turn according to the ap-drift, T � t/2N � 2t/�. Thus also shown in Figure 1

are parameters scaled to the neutral mutation rate, u. propriate Metropolis-Hastings criterion that ensures
that the Markov chain has the desired stationary distri-This parameterization differs from the original descrip-

tion of the method, which used �1 � 4N1u, r � N2/N1, bution. Over the course of a long simulation a record
is kept of the time that the chain spends at each of thea � NA/N1, M1 � 2N1m1, M2 � 2N2m2, and T � t/2N1

(Nielsen and Wakeley 2001). Throughout the article, possible values for each parameter. After a sufficiently
long run, the distribution of residence times for a givenquantities that are in units of individuals (N) or genera-

tions (t) or that are rates per generation (u and m) are parameter should be a good approximation of the mar-
ginal posterior density of that parameter.in boldface type, whereas parameters that are used in

the method, including demographic parameters that Under this multilocus framework the general expres-
sion for the Metropolis-Hastings criterion seems fairlyare scaled by the mutation rate, are expressed in italics

(e.g., m and t). complex, with an update, from parameter values � and
genealogies G1, G2 . . Gn to �* and G 1*, G 2*, . . Gn*, ac-Multiple loci: A key assumption of the method is that

the locus being studied has been evolving neutrally and cepted with probability
that it has been drawn at random from all loci, with
respect to genealogical history. In other words, the locus min �1, �

n

i�1

f(Xi|�*, G i*)f(G i*|�*)f(�*)q[(�*, G i*) → (�, Gi)]
f(Xi|�, Gi)f(Gi|�)f(�)q[(�, Gi) → (�*, G i*)] �

should not have been drawn in such a way that it is
(3)likely to have an atypical gene tree depth or to have

experienced an atypical amount of gene flow. But even [see expression (3) of Nielsen and Wakeley 2001].
if these assumptions apply, different unlinked loci will However, for most parameters the quantity simplifies
vary widely in their histories. This normal stochastic considerably, and in all cases where the parameter being
variance among loci can be very great, and it is a major updated affects the probability associated with more
difficulty for phylogeographic studies that use just one than one locus, the criterion is a product of terms given
locus (Hey and Machado 2003). In principle this can in Nielsen and Wakeley (2001).
be overcome, and parameter estimates greatly im- To include multiple loci it is necessary to extend the
proved, by extending the method to simultaneously in- parameter set. But since under the model all of the
clude multiple loci. basic demographic parameters apply to all loci, the only

The extension of the method to multiple indepen- additional parameters necessary are locus-specific muta-
dent (i.e., effectively unlinked) loci is fairly straightfor- tion scalars. Thus for locus i, we let ui represent the
ward, as the joint density function for the parameters relative mutation rate for locus i such that the popula-
can be expressed as a function of the product of the tion mutation rate at that locus is �ui . One way to imple-
densities calculated for each individual locus. Similar ment such scalars is to pick one locus as a standard with
to expression (1), the joint posterior density can be a mutation rate scalar of 1 and to have the scalars for
written as other loci vary as parameters to be estimated. However,

this would cause parameter estimates to vary depending
f(�|X1, X2, . . . , Xn) � cf(�)�

n

i�1
�
Gi

f(Xi|Gi)f(Gi|�)dGi , on the locus selected as the standard, and it might also(2)

be the case that convergence would be slow because ofwhere � still refers to the vector of parameters of the
the strong correlation among parameters in the pro-model, Xi refers to the data for locus i, and Gi is the
posal kernel. An alternative that we have chosen is togenealogy for locus i. As in the single-locus case, Gi is
let all loci have scalars that are free to vary, subject todescribed by the topology of an ultrametric tree, its
the constraint that their products are equal to 1. Forassociated coalescence times, and the times of migra-
example, when there are two loci, there will be twotions on each branch of the tree. For notational con-
mutation rate scalars, u1 and u2, that vary reciprocallyvenience, from now on we use the notation G � (G1,
so that at all times during the Markov chain simulationG2, . . .) and X � (X1, X2, . . .).
u1 � 1/u2 and vice versa. We use a log uniform priorExpression (2) cannot be solved analytically. How-
on the inheritance scalars subject to the constraintever, it is possible to estimate the posterior probability
�n

i�1ui � 1. At the beginning of a Markov chain simula-density by simulating a Markov chain using the Metropo-
tion with n loci, all n scalars are set to 1. Updates tolis-Hastings algorithm (see, e.g., Gilks et al. 1996). The

basic idea in this method is to simulate a Markov chain these scalars are considered in turn along with updates
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to the other parameters. For each update, two loci, i for a single locus assuming h � 1, then the same data
using an inheritance scalar of h � 1⁄4 will return an esti-and j, are selected at random from the n loci and their

scalars, ui and uj, are replaced by ui* � dui and uj* � mated population mutation rate of four times that value.
Inheritance scalars as parameters: A difficulty withuj/d, respectively. d is drawn at random from a uniform

log scale distribution such that ui* and uj* fall between inheritance scalars is that their values are generally taken
to be known directly as a consequence of the mode of1/x and x (x is a very large number). If we envision

there being n different population mutation rates for inheritance. The usual assumption is that males and
females each contribute equally to the effective popula-population 1, �1,1, . . . , �1,n with �1,i � �1ui, then the value

of �1 is equal to the geometric mean of the individual tion size of the population. An alternative approach to
asserting a particular value for h is to allow the inheri-locus values and remains constant before and after an

update of the scalars. Because both the ratios of update tance scalar to be a parameter in the model. Under
such a framework, the value of h for each locus woulddensities and the ratios of the priors are proportional

to ui*uj*/(uiuj) � 1, the Metropolis-Hastings acceptance be free to vary during the course of the Markov chain
as a function of the data and the model, and posteriorprobability is simply
distributions would be returned for h1, h2, . . . hn just as
for the other parameters. There are two sorts of biologi-min �1,

f(Xi|ui*)f(Xj|uj*)
f(Xi|ui)f(Xj|uj)

� . (4)
cal justifications for this. First, the assumptions regard-
ing sex ratios and effective numbers of males and fe-A benefit of mutation scalars implemented in this way is
males that underlie the conventional values of thesethat they can be easily applied regardless of the mutation
scalars may not hold. Second, and perhaps more impor-model and regardless of the length of individual loci.
tantly, there are other, selective reasons why the effectiveThus, in general a locus represented by long DNA se-
number of gene copies experienced by different lociquences will reveal more polymorphisms and greater
may vary systematically among populations—over anddivergence and correspondingly high values for the mu-
above that variation caused by the mode of inheritance.tation scalar relative to a short locus that is included in
Recurrent selective sweeps (Maynard Smith and Haighthe same analysis. If just two loci of identical underlying
1974; Gillespie 2000) or background selection (Charles-mutation rates per base pair, but of different sequence
worth et al. 1993) can cause a locus to steadily experi-lengths, are included in an analysis, then we would ex-
ence a reduced effective population size that is differentpect the estimate of the mutation rate scalar of the
from that of other loci.longer locus to be greater than one and to be close to

When implementing inheritance scalars as param-the reciprocal of the estimate of the shorter locus. In most
eters we are faced with a situation similar to that forapplications described below, the infinite-sites model is
the locus-specific mutation scalars. As in that case, weused, but regardless of the mutation model the scalars
have used an updating scheme in which pairs of inheri-can be applied to a mixture of loci of various mutation
tance scalars are changed in such a way that the productmodels, including the Hasegawa-Kishino-Yano (HKY)
of all inheritance scalars is 1. The Metropolis-Hastingsmodel (Hasegawa et al. 1985; Palsbøll et al. 2004) as
criterion for updating the inheritance scalars for locuswell as the stepwise mutation model (Hey et al. 2004).
i and j , from hi and hj to dhi and hj/d, isInheritance scalars as constants: When multiple genes

are studied it is often the case that different loci have
min �1,

f(Gi|dhi)f(Gj|hj/d)
f(Gi|hi)f(Gj|hj)

� . (5)different modes of inheritance (e.g., autosomal, hemi-
zygous, or sex limited). The issue raised by these cases
is that the effective population size of nonautosomal For equilibrium models, in which population sizes

and migration rates are constant over an effectively in-loci is correspondingly reduced by their lower effective
level of ploidy and number of carriers in the population. finite period of time, all branches on the genealogy will

scale with both effective population size and mutationThus it is common to multiply estimates of � for a hemi-
zygous locus by a factor of 4⁄3 , and a sex limited locus rate. In this situation, modifiers of effective population

size (i.e., inheritance scalars) and mutation rate (i.e.,by a factor of 4, to bring them up to par with estimates
for autosomal loci. These types of adjustments can be mutation rate scalars) cannot be independently esti-

mated (i.e., the model is not identifiable when bothreadily included within the model. For locus i with an
expected effective number of gene copies of hi , relative inheritance and mutation scalars are free to vary as

parameters). Thus, for example, with data from a singleto an autosomal locus, the population mutation rate
parameter during the Markov chain is set to �hi . Thus population and multiple loci that vary in polymorphism

levels, one could estimate a set of mutation scalars (i.e.,at all points in the Markov chain involving calculations
for locus i, and using �1, �2, and �A, the products of these one for each locus) or a set of inheritance parameters,

but the two sets would be identical and one could notparameters and hi are used instead. The effect of this
is to compress or stretch the distribution of � by a factor estimate both. However, when a model includes popula-

tion splitting, the two sets of parameters become separa-of 1/hi . For example, if an estimated value is obtained
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ble. Polymorphism within populations depends upon is obtained by symmetrically swapping parameter and
genealogy states between chains at rates determined byinheritance mode and mutation rate, while the diver-

gence between populations depends directly upon mu- a Metropolis criterion that is a function of the difference
in overall probabilities between the chains and the dif-tation rate, but not directly upon the mode of inheri-

tance. This is why some models of population structure ference in heating values of the chains (Geyer 1991).
For a simulation with Metropolis coupling among kmust consider the mode of inheritance separately from

mutation rate (Wang and Caballero 1999; Laporte chains, each chain will be approximately a fraction 1/k
as long as a single chain run for the same length ofand Charlesworth 2002) and why multilocus models

of population splitting must include both types of scalars time. The advantage gained is that the overall rate of
mixing on the primary chain may be vastly improved.(Wang et al. 1997).

Because the two mutation and inheritance scalars In practice we have found this method solves the diffi-
culties of inadequate mixing that arise sometimes withboth apply to the population mutation rates (�1, �2, and

�A) the two types of parameters are expected to nega- data sets that include multiple loci.
Mutation models: In the original description, thetively covary to a large extent, particularly if the time

of population splitting has been recent relative to the method was limited to the infinite-sites mutation model
(Kimura 1969). Recently it has been extended to thedepth of gene trees within populations. Similarly gene

flow between populations blurs the demarcation be- HKY model (Hasegawa et al. 1985; Palsbøll et al.
2004). This means that it can be used for loci, like thetween variation that arises between populations, due

to population splitting, and variation that arises within mtDNA, that do not have recombination, but generally
do show evidence of homoplasy. The method has alsopopulations. It is likely that data sets drawn from popula-

tions that have had either very recent separation from been extended to include the stepwise mutation model
(Hey et al. 2004).an ancestral population or substantial gene flow since

separation will not have the divergence necessary to Computer program development: A computer pro-
gram (available from the authors) was written to imple-support the estimation of both mutation rate scalars

and inheritance scalars. ment the method with the enhancements. In addition to
basic debugging, we employed three types of checking:Metropolis coupling: A major difficulty of MCMC esti-

mation of probability densities is not knowing the length ensuring that the posterior distributions are identical
to the prior distributions when f(X |G , �) is set to 1,of time needed for convergence (i.e., for the simulated

values to accurately approximate the true density). The for all G and �; comparing results with simpler models
for which posterior densities can be calculated directlymethod offers no guarantee that the chain will suffi-

ciently traverse the state space in reasonable time, and or that can be assessed using other programs (Nielsen
1997; Wilson and Balding 1998; Nielsen and Wake-there has been some debate on whether an investigator

should run multiple chains and on how long chains ley 2001); and applying the method to data sets simu-
lated under the IM model. This last method is the mostshould be to have some confidence that the results have

converged on the correct answer (Gelman and Rubin complete but it is laborious because there is not a neces-
sary relationship between the parameters used to simu-1992a,b; Geyer 1992a,b). Usually with single-locus data

sets of total sample size �50, chains of 20 million steps late a data set and the posterior densities that are esti-
mated from that simulated data. Rather, multipleprove sufficient for repeatable, albeit rough, point esti-

mates, although considerably longer chains are needed simulated data sets need to be analyzed so that a set of
posterior densities can be assessed in relation to thefor highly precise estimates. The same cannot be said

of data sets with multiple loci, for which convergence true parameter values used for the simulations. Figure 2
shows the marginal posterior densities estimated frommay often be very slow. The fundamental problem is

that for many loci, f(�|G , X) tends to be centered on each of 20 independent five-locus simulations. For each
of the six demographic parameters, the posterior densi-a specific value of � (i.e., the posterior density of the

parameters is well determined, conditional on G). How- ties vary about the true value used in the simulation.
To test whether the locations of these distributions,ever, the unconditional posterior density, f(�|X), may

nonetheless have a large variance. This seems especially considered together, are consistent with the true values
of the parameters (i.e., the values used in the simula-to be an issue for the parameter t and leads to reduced

mixing and slow convergence of the chain. tions), we used Fisher’s approach to combining proba-
bilities from independent tests of the same hypothesisTo offset this difficulty we have implemented a Me-

tropolis-coupled version of the algorithm in which mul- (Fisher 1954). For each posterior density we deter-
mined pi , i � 1, . . . , 20, the chance that a parametertiple chains are run simultaneously, with all chains but

one having heated stationary distributions (Geyer value is more extreme (i.e., departs more from the mean
of the distribution) than the actual true value. That is,1991). These heated chains will not individually return

the correct posterior distributions but they will explore if x is the area of the curve to the left of the true value
then pi � 2x if x � 0.5 and pi � 2(1 � x) if x � 0.5. If thethe parameter space far more quickly than will the non-

heated chain. Increased mixing in the nonheated chain pi’s are uniformly distributed, then a � �2 �20
i�1Log(pi) is
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Figure 2.—The marginal densities ob-
tained by fitting the IM model to simulated
data. The input parameters for the simula-
tions were as follows: �1 � 20; �2 � 40; �A �
10; m1 � 0.05 (2N1m1 � 0.5); m2 � 0.1
(2N2m2 � 2); and t � 5 (t/2N1 � 0.5). For
each simulated data set, coalescent simula-
tions were done for each of five loci with
identical mutation rates under an infinite-
sites mutation model, each with sample sizes
of 10 for each of the two populations. Each
simulated data set was analyzed using wide
uniform prior distributions for each param-
eter and four chains (three heated chains,
in addition to the primary chains) joined by
Metropolis coupling. Each analysis began
with a burn-in period of 300,000 steps fol-
lowed by a primary chain of 6,000,000 steps.
The curves for parameters �1 through t are
shown in A–F, respectively. The true param-
eter values used in the simulations are shown
as shaded vertical bars.
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Figure 2.—Continued.
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�2 distributed with 40 d.f. (i.e., two times the number of
densities). In this distribution 90% of the probability mass
falls above 29.05, 50% falls above 39.3, and 10% falls above
51.8 (Rohlf and Sokal 1981). If the values of the true
parameters in the coalescent simulations are consistent
with the shape and locations of the posterior densities
(i.e., pi is uniformly distributed), then a for each parame-
ter should be drawn from this �2 distribution. The values
of a for the different parameters are �1, 45.5; �2, 48.2;
�A, 29.5; m1, 43.1; m2, 36.8; and t, 41.5. Although these
values are not entirely independent of each other, they
all fall in the middle of the �2 distribution, and their
mean (40.8) is quite close to the 50% point of the �2

distribution (39.3). While results from only a limited
number of simulations have been shown here, they do
suggest that the method is reliable and that the credibil-

Figure 3.—The marginal densities for the population muta-ity intervals established by the method may be interpre-
tion rate parameters obtained by fitting the IM model to a

ted as classical confidence intervals. three-locus data set (loci 4002, 2003, and X010). Distributions
Figure 2 is also useful for providing a sense of how were obtained by integrating the full-likelihood surface over

all of the other model parameters. Values for populations D.much data, under the infinite-sites mutation model, may
pseudoobscura, D. persimilis, and the ancestral species (�1, �2,be needed to return posterior probabilities that have
and �A, respectively) are shown as dashed lines for runs inuseful confidence intervals and that might be expected
which the inheritance scalars are free to vary along with all

to reveal gene flow, if it indeed had been ongoing. For other parameters in the model (also denoted h). The solid
example, most of the simulated data sets did not reveal lines are for runs in which the inheritance scalars as set to

specific values (h � 1 for loci 4002 and 2003 and h � 0.75a nonzero peak for m1 (true value of 0.05 corresponding
for locus X010).to M1 � 0.5), but most data sets did reveal a nonzero

peak for m2 (true value of 0.1, corresponding to M2 �
2). For the other parameters, most curves lie fairly close

to quantify the gene flow, together with the other rele-to the true value, but many curves also easily span values
vant population size and divergence time parameters.that are double or half the true value. Thus while these

Inclusion of inheritance scalars as parameters: To seemodestly sized simulated data sets provide a good ap-
the impact of including inheritance scalars as param-proximate view of the true history, the simulations also
eters, in a multilocus context, we fit the IM model to asuggest that larger multilocus data sets would be re-
data set for the three loci that showed zero or little evi-quired to achieve narrow credible intervals for most
dence of recombination (see below). One locus (4002)parameters.
showed no evidence of recombination, and two loci (2003
and X010) were consistent with zero recombination, pro-

APPLICATIONS AND RESULTS vided that one sequence was removed from each sam-
ple set (the perSALEM sequence in the case of 2003 andWe applied these methods to the divergence of D. pseudo-
psMATH10 in the case of X010). Two other loci (theobscura and D. persimilis (Dobzhansky and Epling
mtDNA and eyeless) could have been included with these1944). This well-studied species pair is well known as
other three; however, both showed genealogical histor-the focus of much of the research by Dobzhansky and
ies that departed markedly from others, suggesting thecolleagues over many years (Lewontin et al. 1981).
action of natural selection (Machado and Hey 2003).When the species are crossed, hybrid females are fertile

We fit the IM model for both the case of constantwhile hybrid males and some hybrid backcross females
inheritance scalars (h � 1 for autosomal loci 4002 andare sterile (Dobzhansky 1936). The species are partially
2003, and h � 0.75 for X-linked locus X010) and thesympatric in the western part of North America (from
case when inheritance scalars were free to vary alongCalifornia to British Columbia; Dobzhansky and Epling
with the other parameters. As shown in Figure 3, both1944) and are known to hybridize at a low frequency
with and without inheritance parameters, the positionsin nature (Dobzhansky 1973; Powell 1983). Recently
of the peaks of the marginal posterior densities for thea set of inbred lines from each species was sequenced
population size parameters suggest that D. pseudoobscuraat 16 different portions of the genome. Analyses showed
has had a larger effective population than D. persimilis.that loci varied significantly in their patterns of varia-
In this case, the effect of including the inheritance pa-tion, strongly suggesting the presence of gene flow at
rameters is to shift the positions of the peaks a modestsome loci, but not at others (Wang and Hey 1996;
amount. A similarly modest effect is observed on t, andWang et al. 1997; Machado et al. 2002; Machado and

Hey 2003). However, it has not been possible until now regardless of the inheritance parameters, both migra-
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Figure 4.—The marginal densities for the migration and
time parameters. Distributions were obtained by integrating Figure 6.—The marginal densities for the inheritance pa-
the full-likelihood surface over all of the other model param- rameters for the runs in which they are free to vary. Distribu-
eters. Both migration rate parameters, m1 and m2, revealed nearly tions were obtained by integrating the full-likelihood surface
identical peaks, both with and without inclusion of inheritance over all of the other model parameters. Values are shown for
parameters (h). For t, the solid line shows the case when each of the three loci in the data set.
inheritance values were preset constants and the dashed line
shows the case where inheritance terms are free to vary as
parameters. selves are shown in Figure 6, with estimated peak loca-

tions at 2.21 (locus 2003), 1.09 (locus 4002), and 0.39
(locus X010). As expected the geometric mean of these
values is near one (0.98). The estimate for a given locus

tion rate parameters were nearly identical and showed
reflects the departure of locus-specific effective popula-

strong peaks at zero (Figure 4). The effect on mutation
tion size from this geometric mean. The estimates vary

rate scalars is more dramatic, and the curves that result
considerably from the case when inheritance scalars are

by inclusion of inheritance scalars are farther apart from
set as constants: 1 for autosomal loci (loci 2003 and

each other and considerably flatter than without them
4002) and 3 ⁄4 for the X-linked locus X010. Although the

(Figure 5). The curves for the inheritance scalars them- curves overlap, they are consistent with the loci having
different effective population sizes, possibly by the ac-
tion of recurrent selective sweeps in partially linked
regions of the chromosome (Gillespie 2000) or by back-
ground selection(Charlesworth et al. 1993).

Together these three loci seem to fit the circumstances
under which separate estimates of both mutation scalars
and inheritance scalars can be obtained. In the first place,
the amount of divergence relative to the depth of genealo-
gies within species is not low (though neither is it very
high). Estimates of divergence time in units of 2N gener-
ations (i.e., 2 t/�) are 0.34 for D. pseudoobscura and 0.73
for D. persimilis. Also the migration rates have probably
been very low or zero in both directions for these loci
(Figure 4).

Loci with recombination: The fitting of the IM model
assumes that the genealogical history of a locus is strictly
bifurcating and thus does not include recombination or
gene conversion. Furthermore, it is difficult to include
recombination in a genealogically based, likelihoodFigure 5.—The marginal densities for the mutation rate

scalars. Distributions were obtained by integrating the full- framework for historical model fitting (Kuhner et al.
likelihood surface over all of the other model parameters. 2000; Nielsen 2000). However, there are ways to use
Values are shown for each of the three loci in the data set. the method with data that come from recombining ge-
As in Figures 3 and 4, results are shown for both the case when

nomes by taking advantage of the imprint left by recom-inheritance scalars are set as constants and the case when they
bination on the pattern of haplotype variation at a locus.are free to vary along with the other parameters (the latter

are designated h). One approach is to limit analyses to loci that do not
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show evidence of recombination by the “four-gamete” these two species have had low levels of gene flow in
the time since they began diverging.criterion (Hudson 1985), as was done in the example

described. The pitfall here is that we expect such loci mtDNA: Table 1 also shows the results of analysis on
data from the mtDNA (Machado and Hey 2003). Theto have shorter genealogies, on average. This is because

those genes that happen to have shorter gene trees will estimated gene tree for these data differed dramatic-
ally from those of other loci, with D. pseudoobscura andalso have had less opportunity for recombination within

the span of their genealogical history. In the case of D. persimilis sharing multiple complete haplotypes (de-
spite high levels of polymorphism) and with a high level4002, 2003, and X010, the data suggest that there has

not been gene flow (Figure 4). If indeed the IM model of divergence between sequences from these species
and a third species, D. pseudoobscura bogotana (Machadois roughly appropriate in these cases, then it is probably

not the case that these loci have had histories much and Hey 2003). In this case, fitting of the IM model
suggests that D. persimilis has had a much larger effectiveshorter than other loci, simply because, in the absence

of gene flow, the depth of the gene tree must extend population size than D. pseudoobscura and a high level
of gene flow from D. persimilis to D. pseudoobscura in theat least to t. Finally, the estimate of t per kilobase pair

of sequence (Table 1) is not lower for these loci than coalescent (i.e., going backward in time, the direction
is the reverse when considered forward in time). Givenfor others.

Another approach for a locus that shows evidence that the mtDNA includes a large number of completely
linked loci, it is probably the case that natural selectionof recombination is to break the data into blocks of

sequence each of which does not show evidence of re- has shaped this history (Machado and Hey 2003).
combination. The algorithm of Hudson and Kaplan
(1985) can be used to identify sequence blocks across

DISCUSSION
which all sequences are consistent with a model of no
recombination. Then together all such blocks found The study of population divergence has often been

limited to two quite different general models. One classwithin a locus can be included in a multilocus fitting
of the IM model (i.e., each block is a “locus”). This will of models assumes that divergence is the result of an

equilibrium between genetic drift, mutation, and lim-violate the assumption that different loci have segre-
gated independently, because the different loci will have ited gene flow, acting over a very long period of time,

while the second class does not include gene flow, buthad highly correlated histories because of tight linkage,
and this is expected to lead to poorly estimated (and instead supposes that divergence is the result of popula-

tion splitting at some point in the past. Sewall Wright’smore sharply peaked) densities. However, it may still
be the case that the mode of the posterior density has classic work on population subdivision (Wright 1922,

1931, 1951) embraces the first class of equilibrium mod-an expected value that is the same as a proper maximum-
likelihood estimate. For each of the loci that showed els, as do stepping-stone models (Kimura and Weiss

1964). In recent years methods for simultaneously esti-evidence of recombination by the four-gamete criterion,
the data were divided into multiple portions, with each mating migration rates and population sizes have been

developed for equilibrium gene flow models (Beerliportion treated as an independent locus in a run of the
IM program. The locations of peak heights for each of and Felsenstein 1999; Bahlo and Griffiths 2000).

New methods have also been developed for estimatingthe main parameters are shown in Table 1. Four loci (Adh,
4003, 3002, and Rh1) revealed estimates of population historical population sizes and divergence times for the

nonequilibrium isolation model, assuming no migra-migration rates (M1 and M2) �0.4. This is consistent
with other analyses that indicated that gene flow was tion (Wakeley and Hey 1997; Nielsen 1998; Nielsen

et al. 1998; Nielsen and Slatkin 2000; Rannala andlimited mostly to loci that are not near chromosomal
inversions that distinguish D. persimilis and D. pseudo- Yang 2003; Wilson et al. 2003). However, for many ques-

tions concerning the divergence of populations, investi-obscura (Machado et al. 2002; Machado and Hey 2003).
Interestingly, low but nonzero levels of gene flow are gators need methods that permit assessments of both

population splitting and gene flow simultaneously (Slat-suggested at several X chromosomal loci, which do carry
large inversions. kin and Maddison 1989; Takahata and Slatkin 1990).

For example, Nielsen and Hey (2003) showed thatYet another approach that allows a portion of the data
from recombining loci to be included in a multilocus likelihood models that do not take migration into ac-

count are not adequate to describe the history of someanalysis is to take from each separate locus one ran-
domly selected block of sequence identified as nonre- human populations.

A new tool for the study of divergence: We have ex-combining by the four-gamete criterion and to not use
the remainder of the data. We used this approach in a tended the original MCMC method of Nielsen and

Wakeley (2001) to include multiple loci with locus-multilocus analysis of all the loci listed in Table 1. The
parameter estimates from this multilocus analysis are specific inheritance scalars. With inclusion of multiple

loci the parameters fall into three distinct categories:near those of the means of the values estimated for each
of the loci individually. Overall the analyses suggest that the primary demographic parameters (including �1, �2,
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TABLE 1

Parameter estimates

No. (t 	 u
)/
Gene locia Lengthb �1 �2 �A m1

c m2
c t u


d kbpe �1 	 u

f �2 	 u


f Rg Ah M1
i M2

i

per 9 1470 1.5 0.6 0.3 0.19 0.32 0.87 11.1 6.57 16.2 6.5 0.40 0.23 0.13 0.09
X008 10 997 3.6 0.3 0.5 0.08 0 0.25 16.1 4.04 57.9 4.0 0.07 0.15 0.14 0
X009 6 698 0.8 1.1 0.5 0 0.10 0.70 6.9 6.92 5.6 7.8 1.40 0.65 0 0.05
Hsp82 3 1957 3.0 0.5 0.9 0 0.07 0.57 4.3 1.25 13.1 2.2 0.17 0.29 0 0.02
X010 1 871 4.5 3.1 2.0 0 0 4.76 1 5.46 4.5 3.1 0.69 0.45 0 0
2003 1 522 5.4 1.7 1.0 0 0 0.57 1 1.09 5.4 1.7 0.33 0.18 0 0
rh1 9 1443 2.4 1.7 0.3 0.38 0 0.34 10.6 2.50 25.1 18.2 0.73 0.14 0.45 0
bcd 8 1371 1.2 0.6 0.5 0 0 0.32 11.3 2.64 13.2 6.9 0.52 0.38 0 0
2002 6 915 5.5 0.6 0.3 0 0 0.76 7.0 5.81 38.7 4.3 0.11 0.05 0 0
2001 4 677 4.2 1.8 0.5 0 0 0.31 4.4 2.01 18.4 7.9 0.43 0.11 0 0
3002 11 660 0.9 0.4 0.5 0.02 5.00 0.02 17.6 0.53 16.4 6.6 0.41 0.58 0.01 0.94
4003 3 619 5.5 3.8 1.0 0.30 0 0.35 3.1 1.75 16.9 11.6 0.69 0.18 0.82 0
Adh 20 3448 0.8 1.1 0.6 0.17 7.93 0.16 28.6 1.33 22.0 30.7 1.39 0.77 0.06 4.25
4002 1 825 5.5 2.3 0.8 0 0 1.45 1 1.76 5.5 2.3 0.41 0.15 0 0
Meanj 6.6 1177 3.2 1.4 0.7 0.08 0.96 0.82 3.12 0.55 0.31 0.12 0.38
Jointk 14 3.0 1.6 0.7 0.06 0.14 0.62 0.54 0.23 0.09 0.11
mtDNAl 1 1826 13.4 1017 1.8 0.20 0.82 2.29 1 1.25 13.4 1017.6 76.15 0.13 1.30 414.65

Parameter estimates are obtained from the location of the peaks of the marginal posterior distributions. D. pseudoobscura was
designated as species 1 and D. persimilis was designated as species 2. The average sample sizes were 16 sequences for D. pseudoobscura
and 13 sequences for D. persimilis (Machado et al. 2002). Results are shown for each individual locus. For those loci that showed
evidence of recombination, the data were divided into segments as described in the text. Also shown are the mean parameter
estimates for the 14 X-linked and autosomal loci. The joint estimate is based on including the leftmost segment of each of the
14 loci in a single model. Results for the mtDNA sequences are shown separately, because of the unique history of this locus
(Machado and Hey 2003).

a For individual genes, the number of “loci” is the number of apparently nonrecombining segments into which the data were
divided to meet the four-gamete criterion for each segment.

b The average length of complete sequences.
c Migration rate estimates were identified as being at 0 when the highest observed value of the marginal posterior density was

at the lower limit of resolution. The HKY model was used for the mtDNA.
d uR is the sum of the mutation rate scalars for the different segments.
e Divergence time in units of mutations per kilobase pairs of sequence (i.e., t/length).
f The product of � estimates and the sum of the mutation rate scalars is an estimate of � for the entire locus.
g The ratio of the estimates of population mutation rates, �2/�1, reflects the size of D. persimilis relative to that of D. pseudoobscura.
h The ratio of the estimates of population mutation rates, �A/�1, reflects the size of the ancestral species relative to that of

D. pseudoobscura.
i Population migration rate estimates, M1 � 2N1m1 � m1 	 �1/2 and M2 � 2N2m2 � m2 	 �2/2.
j Mean parameter estimates for the 14 X-linked and autosomal loci.
k Results of fitting the model to all 14 loci. Those loci that showed evidence of recombination were represented only by the

leftmost segment.
l Results for the mtDNA, including data from both ND4 and COI (Machado and Hey 2003).

�A, m1, m2, and t); the mutation scalars; and, if imple- inheritance parameters, it may be possible for investiga-
tors to study the effects of selection, via linkage, withinmented as parameters, the inheritance scalars. To facili-

tate mixing of the Markov chain, we have also imple- the IM model. If directional selection acts steadily,
either as recurrent selective sweeps or as backgroundmented Metropolis coupling (Geyer 1991). In addition,

the original limitation to the infinite-sites mutation selection, then the levels of polymorphism in a region
will be a function of local gene density and recombina-model has been overcome by the inclusion of the HKY

mutation model (Palsbøll et al. 2004) and the stepwise tion levels, both of which may be shared between closely
related species. For example, both in the D. simulansmutation model, as well as a model that includes loci

that have both an infinite-sites portion and a stepwise complex (Kliman et al. 2000) and between D. pseudo-
obscura and its sister species (Machado et al. 2002),portion (Hey et al. 2004). With these extensions the

method offers a versatile tool for addressing questions polymorphism levels per base pair are correlated across
loci between species. One reason for this may be thethat, while traditionally quite difficult, are critical for

our understanding of basic evolutionary processes of action of selection. Traditionally, studies of polymor-
phism levels as a function of linkage have been limiteddivergence.

Inheritance scalars as parameters: With the inclusion of to intraspecific comparisons (together with an outgroup
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to control for mutation rate; Begun and Aquadro 1992). We can also inquire of the date at which D. pseudo-
obscura and D. persimilis began to diverge. From Table 1,Also traditionally, the fitting of demographic models

like the IM model has required that loci conform to the mean estimated value of t since population splitting
is 3.12 mutations per kilobase pair. To convert to abso-the neutral model. The invocation of inheritance pa-

rameters may allow more complete studies that include lute time, we can use the estimated absolute divergence
time between D. pseudoobscura and the more distantlyselection and demography.

Simplified models as special cases: Another advantage of related species, D. miranda, of 2 million years (Aquadro
et al. 1991; Wang and Hey 1996). The mean divergencea highly parameterized IM model is that it includes a

number of boundary cases that are often of interest. between these species over the 14 loci in Table 1 is 21.2
changes per kilobase pair (Machado et al. 2002). ThusThus, by prescribing migration rates of zero, the model

becomes a conventional isolation model (Takahata the estimated rate of divergence, per year, per kilobase
is 5.3 	10�6 changes per year and the estimated time ofand Nei 1985; Hey 1994; Wakeley and Hey 1997). If

migration rates are nonzero and the time of splitting is common ancestry between D. pseudoobscura and D. persimi-
lis is 589,000 years (i.e., 3.12/5.3 	10�6). Given thespecified to be very long ago, then the model becomes

a simple two-island model and can be used to study the phenotypic similarity between these species (Dobzhan-
sky 1944), the fact that they can produce fertile hybrids,countervailing forces of genetic drift and gene flow and

the equilibrium between them. If one of the descendant and the estimates of gene flow between them, it is per-
haps surprising that the divergence time estimate is sopopulations has a size of zero then the model becomes

one of instantaneous population size change (i.e., at t) great. If we roughly adjust for generations (e.g., eight
per year in Drosophila) then there may have been 20for the remaining population. Finally if it is specified

that t � 0, such that there has effectively not been a times the number of generations separating these two
species of Drosophila as currently separates humans andseparation, then the model becomes one of a single

constant-size population. The model can also be simpli- chimpanzees [i.e., assuming 6 million years divergence,
at 25 years per generation (Chen and Li 2001; Brunetfied, and the number of parameters reduced, by speci-

fying that two or all three population mutation rates are et al. 2002)]. The contrast suggests a slow divergence
process between D. pseudoobscura and D. persimilis, not-identical or that the two migration rates are identical.

All of these variations are included in the computer withstanding the presence of gene flow.
program that realizes the method. We thank John Wakeley for helpful comments throughout this work.

The divergence of D. pseudoobscura and D. persimilis :
Previous studies on these species have shown that differ-
ent loci vary widely in their genealogical history and
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Evolution, edited by R. DeSalle and B. Schierwater. BirkhäuserMachado, C. A., and J. Hey, 2003 The causes of phylogenetic con-

flict in a classic Drosophila species group. Proc. R. Soc. Lond. Verlag, Basel, Switzerland.
Wang, J. L., and A. Caballero, 1999 Developments in predictingSer. B 270: 1193–1202.

Machado, C., R. M. Kliman, J. M. Markert and J. Hey, 2002 Infer- the effective size of subdivided populations. Heredity 82: 212–226.
Wang, R. L., and J. Hey, 1996 The speciation history of Drosophilaring the history of speciation from multilocus DNA sequence

data: the case of Drosophila pseudoobscura and its close relatives. pseudoobscura and close relatives: inferences from DNA sequence
variation at the period locus. Genetics 144: 1113–1126.Mol. Biol. Evol. 19: 472–488.



760 J. Hey and R. Nielsen

Wang, R. L., J. Wakeley and J. Hey, 1997 Gene flow and natural Wright, S., 1922 Coefficients of inbreeding and relationship. Am.
Nat. 56: 330–338.selection in the origin of Drosophila pseudoobscura and close rela-

tives. Genetics 147: 1091–1106. Wright, S., 1931 Evolution in Mendelian populations. Genetics 16:
Wilson, I. J., and D. J. Balding, 1998 Genealogical inference from 97–159.

microsatellite data. Genetics 150: 499–510. Wright, S., 1951 The genetical structure of populations. Ann.
Wilson, I. J., M. E. Weale and D. J. Balding, 2003 Inferences Eugen. 15: 323–354.

from DNA data: population histories, evolutionary processes and
forensic match probabilities. J. R. Stat. Soc. Ser. A Stat. Soc. 166:
155–188. Communicating editor: M. K. Uyenoyama


